                                                         The CALL command.

Example from SRFC0050.

CALL PGM2010 USING DFHEIBLK,

                   DFHCOMMAREA,

                   SRFC2010-CONV-RECD,

                   APP-RECORD,

                   APPG2-RECORD,

                   AP-MDT-DATA-RECORD,

                   AP-DATA-AREA,

EXCEPTION

    IF INV-REPLY-TO-QUEUE = SPACES

        PERFORM 2310-SUSPEND-APP THRU 2310-EXIT

    ELSE

                    INITIALIZE UNIX-DB-REQUEST-HEADER



Explantion :

The CALL statement is a PROCEDURE DIVISION  statement  which  transfers control from one object program to another.

The program containing the CALL statement is referred to as the calling program;  the  program  referenced  in the CALL statement is the called  subprogram.

Once the called subprogram completes execution,  control  transfers to the  statement following the CALL statement (or,  if specified,  to the statement or statements following the NOT ON EXCEPTION phrase).

       Format 1

       --------

         CALL identifier1/literal1

         USING identifier2/

               {BY} REFERENCE identifier2/

               {BY} REFERENCE ADDRESS OF identifer2/

               {BY} REFERENCE file-name1/

               {BY} CONTENT identifier2/

               {BY} CONTENT ADDRESS OF identifier2/

               {BY} CONTENT LENGTH OF identifier2/

               {BY} CONTENT literal2

         {ON} OVERFLOW statement1

         END-CALL

       Format 2

       --------

         CALL identifier1/literal1

         USING identifier2/

              {BY} REFERENCE identifier2/

               ADDRESS OF identifier2/

               {BY} REFERENCE ADDRESS OF identifier2/

               {BY} REFERENCE file-name1/

               {BY} CONTENT identifier2/

               {BY} CONTENT ADDRESS OF identifier2/

               {BY} CONTENT LENGTH OF identifier2/

               {BY} CONTENT literal2/

         {ON} EXCEPTION statement1

         NOT {ON} EXCEPTION statement2

         END-CALL

Identifier1 must be an alphanumeric data item which contains  the  name of the subprogram to be called.  (If the name of the subprogram is less than 8 characters in length, then it should be padded on the right with blanks to form an 8-character name.)

Literal1 must be a non-numeric  literal  containing  the  name  of  the subprogram to be called.

As an IBM extension,  when the  called  subprogram  is  to  be  entered through  an  ENTRY  statement  (rather  than  at  the  beginning of the PROCEDURE DIVISION), the content of identifier1 or literal1 must be the same as the name specified in the called subprogram's ENTRY statement.

Called programs may contain CALL  statements;  however,  they  may  not directly or indirectly call the calling program. 

       USING

The USING phrase is used to pass parameters (i.e., data) to the called subprogram. It is included  only  if  there is a USING phrase in the PROCEDURE DIVISION header or the  ENTRY statement  through which the called  subprogram  is invoked (i.e., only if the called subprogram is expecting to have one or more parms passed to it).

Each of the operands of the USING phrase  (i.e., identifier2, record-name1, literal2) can be coded multiple times if needed in order to pass multiple parms to the called subprogram.  The order of appearance of the operands in the USING phrase of the CALL statement and in the USING phrase associated  with  the  entry  point  of  the  called  subprogram determines  the  correspondence between the parameters being passed and received. The values of the parameters made available  to  the  called  subprogram  are the values that the parameters happen to contain at the time the CALL statement is executed.

For more information on the USING phrase, see PROCEDURE DIVISION.

       BY REFERENCE

BY REFERENCE (like BY CONTENT) applies to all parameters that follow it (i.e., until another BY REFERENCE or BY CONTENT phrase is encountered).

BY  REFERENCE is assumed if neither BY REFERENCE nor BY CONTENT is specified.

When BY REFERENCE is specified or assumed for a parameter, the corresponding data item in the called program occupies the same storage area as the data item in the calling program.

Identifier2  may  be  any  data  item.

ADDRESS OF is provided as an IBM extension. For more information, see the ADDRESS OF special register.

       BY CONTENT

BY CONTENT (like BY REFERENCE) applies to all parameters that follow it (i.e., until another BY REFERENCE or BY CONTENT phrase is encountered).

When BY CONTENT is specified for a parameter, the value of that parameter is assigned (i.e.,  moved) to the corresponding parameter of the called program. The two items do not, in this case, share the same storage area.

Identifier2 may be any data item.

Literal2  is  provided  as  an  IBM  extension and may be a non-numeric literal, a figurative constant, or a DBCS literal.

LENGTH OF is provided as an IBM extension. For more information, see the LENGTH OF special register.

       ON EXCEPTION

ON EXCEPTION is an optional phrase that allows the calling program to dictate  the  action to be taken when the called program cannot be made available.

Statement1 represents the statement  or  statements  that  are to be executed if and only if the called subprogram cannot be made available.

If these statements do not cause a transfer of control, then, once they are exectued, control transfers to the end of the CALL statement. 

       NOT ON EXCEPTION

NOT ON EXCEPTION is an optional phrase that allows the calling program to dictate the action to be taken when the called program can be made available.

Statement2 represents the statement or statements that are to be executed if and only if the called subprogram can be made  available. They are executed after return of control from the called subprogram.

If these statements do not cause a transfer of control, then, once they are executed, control transfers to the end of the call statement.

       ON OVERFLOW

ON OVERFLOW is an optional phrase that has the same effect  as  the  ON EXCEPTION phrase.

Note: This element may behave differently when the CMPR2 compiler option is used.

       END-CALL

See DELIMITED SCOPE STATEMENTS.

       STATIC/DYNAMIC CALLS

The CALL to a separately compiled subprogram can be either static or dynamic.

In a static CALL, the subprogram is part of the same load module. The first time it is called, the subprogram is already resident in storage. For subsequent calls, the subprogram is still in storage and control is transferred to it in its last  used  state  (unless it possesses the INITIAL attribute).

In a dynamic CALL, the subprogram is link-edited into a separate load-module  and  is loaded into storage only if and when called.  The first dynamic CALL to a subprogram obtains a fresh copy  of  the  subprogram. Subsequent dynamic calls transfer control to the same copy of the subprogram in its last used state  (unless it possesses the INITIAL attribute).

When a CANCEL statement is issued for a dynamically called subprogram, the storage occupied by the subprogram is freed and a  subsequent  CALL to  the  subprogram  will function as though it were the first.  If the called subprogram has more than one entry point  (provided as an IBM extension),  differing  entry points must not be specified in a dynamic CALL statement until an intervening CANCEL statement has been executed.

The mode of a CALL statement (as static or dynamic) is controlled by the compiler option DYNAM  and by form of the CALL statement (i.e., whether the subprogram to be called is specified through an  identifier or through a literal).  This is illustrated in the chart below:

             FORM OF CALL                   MODE

       -------------------------       --------------

       CALL identifier                      Always dynamic

       CALL literal with DYNAM         Dynamic

       CALL literal with NODYNAM       Static

Suppose we have a calling program set up as shown below:

       WORKING-STORAGE SECTION.

              .

       01  WS-SUB-PROG      PIC X(8) VALUE 'SUBPROG1'.

              .

              .

       01  WS-EMP-REC.

           05  WS-EMP-NAME  PIC  X(20).

           05  WS-EMP-ADDR  PIC  X(20).

           05  WS-EMP-SAL   PIC  S9(5)V99 COMP-3.

              .

              .

       01  WS-PROD-REC.

           05  WS-PROD-TYPE  PIC X.

           05  WS-PROD-UNITS PIC S9(5)V99 COMP-3.

              .

              .

       PROCEDURE DIVISION.

              .

       CALL WS-SUB-PROG USING WS-EMP-REC

                                                      WS-PROD-REC.

               .

               .

Since this CALL statement uses an identifier to specify the name of the subprogram to be called, this would be a dynamic CALL.  If the compiler option NODYNAM is in effect,  then a static CALL to the same subprogram could be coded as:

       CALL 'SUBPROG1' USING WS-EMP-REC

                                                 WS-PROD-REC.

With either type of CALL (and assuming we are calling with a program-name and not entering the subprogram thru an ENTRY statement), the PROCEDURE DIVISION header and the LINKAGE  SECTION for the called subprogram could be coded as shown below:

       LINKAGE SECTION.

01 LS-EMP-REC.

           05  LS-EMP-NAME  PIC  X(20).

           05  LS-EMP-ADDR  PIC  X(20).

           05  LS-EMP-SAL   PIC  S9(5)V99 COMP-3.

       01  LS-PROD-REC.

           05  LS-PROD-TYPE  PIC X.

           05  LS-PROD-UNITS PIC S9(5)V99 COMP-3.

              .

              .

       PROCEDURE DIVISION USING LS-EMP-REC

                                LS-PROD-REC.

